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Motivation

Given a collection of positive numbers from a set of random data
We’d expect that the leading digits are distributed evenly...

Benford’s Law:
Leading digit 1 →30% of the time
Leading digit 9 only →4.6% of the time

This talk will connect Benford’s Law to logarithms, randomness, and
dynamical systems
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Motivation

Data from: https://www.youtube.com/watch?v=42fGFDNs-0A
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Historical Origins: Early Observations

First Observed by Simon Newcomb (1881):

Earlier pages of log tables were significantly more worn out than later
pages.
He made a rule similar to Benford’s Law

Rediscovered by Frank Benford (1938):

Observed the same phenomenon
Tested the law extensively. Tests included data like:

Surface areas of 335 rivers
Sizes of 3,259 U.S. populations
104 physical constants
1,800 molecular weights
Street addresses from American Men of Science

He popularized the law.

William Hao (UT Austin) Dynamical Systems - Benford’s Law April 24, 2025 4 / 18



What is Benford’s Law?

Benford’s Law: In naturally occurring, or extensive numerical datasets,
the probability P(d) that the leading digit is d (d ↑ {1, 2, ..., 9}) is:

P(d) = log10

(
1 +

1
d

)

Generalization to any base b: The probability that the first digit is
d ↑ {1, 2, ..., b ↓ 1} is:

Pb(d) = logb

(
1 +

1
d

)

Base 10 Examples:

P(1) = log10(2) ↔ 0.301 (30.1%)
P(2) = log10(1.5) ↔ 0.176 (17.6%)
...
P(9) = log10(10/9) ↔ 0.046 (4.6%)
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What digits appear in 2n? (Israel Gelfand’s Question)

Seemingly unrelated application:
Consider the sequence 2n: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...

What are the leading digits of each term?

Claim: The distribution of these leading digits follows Benford’s Law.
To prove, we need a way to analyze the distribution of first digits
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Proof Idea 1: Logarithms Determine First Digits

Relating First Digit to Logarithms

Any power 2n = d ↗ 10k; 1 ↘ d < 10, k = ≃log10(2n)⇐.
Ex. 214 = 16384 = 1.6384 ↗ 104

First digit, D, is always equal to ≃d⇐ (floor function)
Take log10 :

log10(2n) = log10(d ↗ 10k)

n log10(2) = log10(d) + k

Let X = n log10(2). Note that k = ≃X⇐

X ↓ k = log10(d)

X ↓ ≃X⇐ = log10(d)

frac{X} = frac{n log10(2)} = log10(d)
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Mathematical inequality for floor function:

log10(D) ↘ log10(d) < log10(D + 1)

log10(D) ↘ frac{n log10(2)} < log10(D + 1)

Key Insight: Distribution of the first digit depends entirely on how
frac{n log10(2)} is distributed within [0, 1)
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Proof Idea 2: The Circle Rotation Analogy

Connecting to Dynamical Systems: Irrational Circle Rotation

Consider the sequence of fractional parts: xn = frac{nω}; ω = log10(2).
This sequence is generated by the dynamical system of rotation on a
circle:

Space: The circle T = R/Z (or interval [0, 1))
Transformation: T(x) = {x + ω} (Rotation by ω)
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Proof Idea 3: Input from Dynamical Systems Theory

Applying Weyl’s Theorem

Key Fact: ω = log10(2) is irrational.
Weyl’s Equidistribution Theorem: For irrational ω, the orbit {nω} is
uniformly distributed in [0, 1).

Conclusion: Proportion of n where xn = frac{nω} falls into
[log10(D), log10(D + 1)) is just length.

P(D) = Length = log10(D + 1) ↓ log10(D) = log10

(
1 +

1
D

)

This is exactly Benford’s Law!
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Scale Invariance

Key property arising from Benford’s Law: scale invariance.
If dataset {xi} follows Benford’s law, then scaled dataset {c · xi} (for
c > 0) should also follow.

Analogy: Imagine converting units of a data set, like feet to meters,
dollars to euros, miles to kilometers. The distribution of first digits
shouldn’t change. (And it doesn’t!)
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Scale Invariance

Mathematical expression:

If X is a r.v., Benford’s Law holds if frac{log10 X} is uniform on [0, 1)
Scale by c: log10(cX) = log10 c + log10 X
Take fractions: frac{log10(cX)} = frac{log10 c} + frac{log10 X}.

What this means: Adding a constant log10 c and taking the fractional
part corresponds to rotation on a circle.
If original distribution frac{log10 X} was uniform, the rotated distribution
remains uniform.
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Connections to Other Systems

Benford’s Law appears naturally in many systems with growth,
multiplicative, or chaotic behavior

3n

Fibonacci sequence (ratio of terms approaches ε)
Logistic growth for population modeling

Textbook: Nillsen discusses equivalence/connection of a Kronecker
system (irrational rotations on a circle) and a Benford system (related to
multiplication by 10 modulo 1) (Section 3.18)
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Randomness: Benford vs. Normal Numbers

Normal Numbers (Borel): Numbers that exhibit maximum digit
randomness.

Normal Number: All digits appear with equal asymptotic frequency (1/b)
in a single number’s base-b expansion.
Borel’s Theorem (1909): Almost all real numbers (Lebesgue measure) are
normal to every base b ⇒ 2

Distinction:

Normality⇑ Distribution of all digits in a single number.
Benford⇑ Distribution of the first digit across a set of numbers.

Analogy: “Logarithmic” Normality

Benford’s Law: the fractional part of numbers’ logarithms are uniformly
distributed on [0, 1)
Uniformity of logarithms parallels the uniformity of digits in Borel’s NNT
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Applications of Benford’s Law

Fraud Detection: One of the major applications
Financial statements, tax returns, credit card transactions, election results
Human-fabricated data often doesn’t follow Benford’s Law

Validating Scientific Data: Checking if experimental results or physical
constants conform to Benford’s Law

Natural Phenomena: Population sizes, river lengths, stock market data,
earthquake magnitudes

Important: Benford’s Law applies more strongly to natural data sets
when the data spans several orders of magnitude
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Takeaways and Conclusion

Benford’s Law is an interesting, counter-intuitive statistical law that
seems to pop up all the time. Governs what leading digit looks like in a
variety of datasets

Fundamentally connected to properties of logarithms and scale
invariance
Deeply connected to dynamical systems (Weyl’s Theorem - irrational
increment ”rotations” are uniformly spread on a circle)

Broad connections to randomness, recurrence, and chaotic behavior in
mathematical systems
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Questions?
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